Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475105

RESUMO

Distributed optical fiber acoustic sensing (DAS) is promising for long-distance intrusion-anomaly detection tasks. However, realistic settings suffer from high-intensity interference noise, compromising the detection performance of DAS systems. To address this issue, we propose STNet, an intrusion detection network based on the Stockwell transform (S-transform), for DAS systems, considering the advantages of the S-transform in terms of noise resistance and ability to detect disturbances. Specifically, the signal detected by a DAS system is divided into space-time data matrices using a sliding window. Subsequently, the S-transform extracts the time-frequency features channel by channel. The extracted features are combined into a multi-channel time-frequency feature matrix and presented to STNet. Finally, a non-maximum suppression algorithm (NMS), suitable for locating intrusions, is used for the post-processing of the detection results. To evaluate the effectiveness of the proposed method, experiments were conducted using a realistic high-speed railway environment with high-intensity noise. The experimental results validated the satisfactory performance of the proposed method. Thus, the proposed method offers an effective solution for achieving high intrusion detection rates and low false alarm rates in complex environments.

2.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112435

RESUMO

Deep learning anomaly detection is important in distributed optical fiber acoustic sensing (DAS). However, anomaly detection is more challenging than traditional learning tasks, due to the scarcity of true-positive data and the vast imbalance and irregularity within datasets. Furthermore, it is impossible to catalog all types of anomalies, therefore, the direct application of supervised learning is deficient. To overcome these problems, an unsupervised deep learning method that only learns the normal data features from ordinary events is proposed. First, a convolutional autoencoder is used to extract DAS signal features. A clustering algorithm then locates the feature center of the normal data, and the distance to the new signal is used to determine whether it is an anomaly. The efficacy of the proposed method was evaluated in a real high-speed rail intrusion scenario, and considered all behaviors that may threaten the normal operation of high-speed trains as abnormal. The results show that the threat detection rate of this method reaches 91.5%, which is 5.9% higher than that of the state-of-the-art supervised network and, at 7.2%, the false alarm rate is 0.8% lower than the supervised network. Moreover, using a shallow autoencoder reduces the parameters to 1.34 K, which is significantly lower than the 79.55 K of the state-of-the-art supervised network.

3.
Entropy (Basel) ; 25(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36832615

RESUMO

This paper proposes a new trajectory tracking control scheme for the four mecanums wheel omnidirectional mobile robot (FM-OMR). Considering the influence of uncertainty on tracking accuracy, a self-organizing fuzzy neural network approximator (SOT1FNNA) is proposed to estimate the uncertainty. In particular, since the structure of traditional approximation network is preset, it will cause problems such as input constraints and rule redundancy, resulting in low adaptability of the controller. Therefore, a self-organizing algorithm including rule growth and local access is designed according to the tracking control requirements of omnidirectional mobile robots. In addition, a preview strategy (PS) based on Bezier curve trajectory re-planning is proposed to solve the problem of tracking curve instability caused by the lag of tracking starting point. Finally, the simulation verifies the effectiveness of this method in tracking and trajectory starting point optimization.

4.
IEEE J Biomed Health Inform ; 26(1): 369-378, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543211

RESUMO

The combination of Raman spectroscopy and deep learning technology provides an automatic, rapid, and accurate scheme for the clinical diagnosis of pathogenic bacteria. However, the accuracy of existing deep learning methods is still limited because of the single and fixed scales of deep neural networks. We propose a deep neural network that can learn multi-scale features of Raman spectra by using the automatic combination of multi-receptive fields of convolutional layers. This model is based on the expert knowledge that the discrimination information of Raman spectra is composed of multi-scale spectral peaks. We enhance the interpretability of the model by visualizing the activated wavenumbers of the bacterial spectrum that can be used for reference in related work. Compared with existing state-of-the-art methods, the proposed method achieves higher accuracy and efficiency for bacterial identification on isolate-level, empiric-treatment-level, and antibiotic-resistance-level tasks. The clinical bacterial identification task requires significantly fewer patient samples to achieve similar accuracy. Therefore, this method has tremendous potential for the identification of clinical pathogenic bacteria, antibiotic susceptibility testing, and prescription guidance.


Assuntos
Redes Neurais de Computação , Análise Espectral Raman , Bactérias , Humanos , Análise Espectral Raman/métodos
5.
Opt Express ; 28(3): 2925-2938, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32121970

RESUMO

This paper presents a novel and general distributed acoustic sensing (DAS) signal recognition framework aimed at real-time detection and classification of intrusion in the space-time domain. The framework is based on the combination of a convolution neural network (CNN) and a long short-term memory network (LSTM). The convolutional structure extracts the spatial features from multi-channel signals of the DAS system, while the LSTM network analyzes the temporal relationships over time. The framework can be deployed on high-speed railways for real-time intrusion threat detection, which is one of the most urgent and challenging problems that needs to be resolved as there is an increasing demand for high detection and low false alarm rates, and short response time. The alarm sensitivity and specificity of the framework are controlled by user-set parameters. A real field experiment is conducted in a strong background noise scenario and an intrusion threat detection rate of 85.6%, with only 8.0% false alarm rate is achieved. For threat classification, the average threat detection rate is 69.3%, and the average false alarm rate is 13.2%. Owing to the high detection accuracy of the framework, the average detection response time is shortened to 8.25 s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...